
A Distributed Content Independent Method for Spam Detection

Alex Brodsky
University of Winnipeg,

Winnipeg, MB, Canada, R3B 2E9,
abrodsky@acs.uwinnipeg.ca

Dmitry Brodsky
Microsoft Corporation,

Redmond, WA, USA, 98033,
dbrodsky@microsoft.com

Abstract

The amount of spam has skyrocketed in the recent past.
Traditionally, spam was sent by single source mass mail-
ers (spammers), making it relatively easy to screen out
through the use of blacklists. Recently spammers started
using botnets to send out the spam, rendering the black-
lists ineffective. Although, content-based spam filters
provide temporary relief, this is a never-ending cat-and-
mouse game between spammers and filter developers.

We propose a distributed, content independent, spam
classification system that is specifically aimed at botnet
generated spam and can be used in combination with ex-
isting spam classifiers. Our proposed system uses source
identification in combination with a peer-to-peer based
distributed database to identify e-mails that are likely to
have originated from botnets. The system is distributed
in order to provide a robust defense against denial-of-
service attacks from the very same botnets. Lastly, our
system is specifically designed to be used within the
existing e-mail infrastructure. It does not require spe-
cial hardware, changes to the underlying protocols, or
changes to the mail transfer agents.

1 Introduction

The amount of junk e-mail, commonly called spam, has
skyrocketed in the recent past. Traditionally, spam was
sent by single source mass mailers (spammers). This
spam is relatively easy to screen by using lists of known
spammers [5, 10, 15, 28, 29], and dropping all e-mail
that originates at a listed address. Recently, the spam-
mers started using distributed networks of hijacked PCs,
called botnets [6, 8], to send spam, rendering the list sys-
tem ineffective.

Although content-based filters provide some tem-

porary relief from spam, they represent a cat-and-
mouse game between the spammers and the spam fil-
ter developers—every time the developers improve their
filters, the spammers create new ways of fooling them.
Consequently, a content-independent method is needed.

In the past, spammers used nondistributed systems
that in turn were susceptible to nondistributed counter-
measures. The advent of botnets has given the spam-
mers a distinct advantage, rendering many of the existing
(nondistributed) countermeasures ineffective. To rectify
this asymmetry, distributed countermeasures are needed.

We propose a distributed, content independent, spam
classification system, called Trinity, that is specifically
aimed at botnet generated spam and can be used in com-
bination with existing spam classifiers. In order to be
viable, Trinity must be easy to integrate within the ex-
isting e-mail infrastructure. Specifically, it must not re-
quire changes to existing protocols or mail transfer agent
(MTA), it can easily be hosted on the same host as the
MTA, and it must work in combination with existing
spam filtering mechanisms. Secondly, the system should
provide the recipients with the option to bypass Trinity.
Third, the system must be resilient to denial-of-service
attacks, and must not have single point of failure modes,
such as centralized servers.

Trinity is based on the following observation: in order
to be effective, bots must send a relatively large number
of e-mails in a short amount of time. This stems from
the fact that most computers in a botnet are only up for
a short period each day; in the evenings when the aver-
age user comes home and turns on their machine. Con-
sequently, if an e-mail is received from an “unknown”
source that has sent many e-mails in a short period of
time, then the likelihood of this being spam is high.

Trinity receives each e-mail from the MTA via an ex-
isting framework such as SpamAssassin [27]. It first de-

1



termines the source of the e-mail (IP address) using the
e-mail’s envelope—a challenging task in itself [11]. Us-
ing this IP address, Trinity updates and queries the dis-
tributed database, which is updated by all MTAs that use
Trinity. The database tracks e-mail sources and the num-
ber of e-mails that the source recently sent within a fixed
period—on the order of an hour. This score is added
to the e-mail’s envelope, in the form of an X- line, and
may also be returned to the general spam classification
framework. The score is then used by the mail user agent
(MUA), typically called a mail client, to classify the e-
mail. Namely, if the score is high, and the sender is not
in the recipient’s address book, or the sender/recipient1

lists, then the e-mail must be spam. This late-stage clas-
sification, i.e., at the mail client, prevents incorrect clas-
sification of e-mails originating from mailing lists.

The remainder of this paper is divided as follows. The
next section describes the problem and challenges that
Trinity addresses. Section 3 provides an overview of
Trinity’s design assumptions, its architecture, and the
technical challenges involved. Sections 4, 5, and 6 de-
scribe the design of Trinity’s components, and how they
address some of the technical challenges. Section 7 com-
pares Trinity to existing e-mail classification approaches
and Section 8 summarizes and discusses future work.

2 Botnet Generated Spam

In the past spam came from static sources such as mar-
keting companies, various e-commerce firms, and third-
party mailers. In these cases, the spam was sent from
a single source with a fixed IP address. E-mail orig-
inating at these sources could easily be classified by
checking its source against a blacklist of known spam-
mers [5, 10, 15, 28, 29]. Provided that the blacklists are
correct and up-to-date, classifying spam that originates
at a single source is straightforward.

Recently, to circumvent blacklists, spammers began
using botnets. Botnets, are networks of bots, which are
computers that are hijacked via a virus, worm, Trojan,
or some other malware infection. Typically, the bot is
connected to the Internet via a DSL or cable subscription
and is assigned an IP dynamically, at boot time. Since
most users only turn on their machines when they need
to use them, the bot’s IP address can change on a daily
or even hourly basis due to DHCP churn [22]. Once, a
bot is activated it can be remotely instructed, to infect
other machines, participate in denial-of-service attacks,
or send spam.

In the latter case, the bot can use the ISP’s (Internet
Service Provider) own SMTP server to relay the spam.

Since the server cannot differentiate between e-mail sent
by the actual user from that sent by the bot, it becomes
an unwilling accomplice in the distribution of spam. Fur-
thermore, since the IP address of the bot can change from
day to day, blacklists are rendered ineffective. Adding
the relay to the blacklist cannot be done since it would
also block all legitimate e-mails from the entire ISP.

In response to these tactics, commercial mail systems
such as IronPort [14] and CipherTrust [4] have started
quarantining or aging received e-mail to allow the black-
lists time to catch up. In particular, this is done when the
number of e-mails from the same source spikes. How-
ever, this is problematic for a couple reasons. First, e-
mail is delayed for long periods of time, eliciting com-
plaints from users. Second, as was noted in [22, 17],
the average bot sends on average 10 spams per day to a
specific domain. Thus, the chances of the mail transfer
agent receiving many e-mails from a single host is rela-
tively small.

A different approach to identifying spam is to clas-
sify e-mail based on its content i.e., the body of the e-
mail. This approach does not rely on the source of the
e-mail being static and does not suffer from the lag be-
tween when a new spammer commences operations, and
when it is added to a blacklist. Unfortunately, the result
is a cat-and-mouse game between the spammers and the
filter developers. Every time new filters are developed,
spammers develop new countermeasures, forcing the fil-
ter developers to create new filters. This not only uses
up significant resources, but also increases the potential
for false-positives; given the importance that e-mail has
acquired in our daily lives, this is becoming less and less
tolerable. Furthermore, it takes much more time to de-
velop or tune a filter than to add a host to a blacklist.

Several collaborative and distributed e-mail classifica-
tion approaches have been tried [3, 9, 13, 19, 21, 31, 32].
These approaches keep a distributed database of known
spam signatures, which are matched against incoming e-
mail. However, these approaches depend on the same
spam message being sent to many recipients. The
Achilles heel of these approaches is that an e-mail mes-
sages can easily be tailored to each recipient. In fact,
any content based approach—relying on the contents of
the e-mail—is due to the same fate, an endless cat-and-
mouse game.

Any viable approach to this problem must surmount
several challenges. First, it must be easily installable
and pluggable within the existing infrastructure. Namely,
no existing protocols or software need be modified, it
should use existing frameworks and interfaces, without
modifications to the mail transfer agents or mail clients.

2



Second, it must not rely on the contents of the e-mail,
just the envelope. Third, the system must scale, be se-
cure, and have no central point of failure. Particularly, it
must not be susceptible to malicious hosts that masquer-
ade as valid MTAs and must be resistant to distributed
denial-of-service attacks that can be launched by botnets.
Fourth, it must be user-controllable, i.e., it can be dis-
abled by the recipient. Lastly, the system has to respond
rapidly to spam. Since the IP address linking a bot to the
e-mail it sends is temporal, the system must identify the
source of a spam session quickly and ensure that stale
information is not retained. Our system, Trinity, meets
these criteria.

3 Overview of Trinity

Trinity is based on the assumption that there is a large
class of spam-bots that send large amounts of e-mail
over short periods of time. For example, approximately
70 billion e-mails are sent each day, 70%2 of which are
spam [28]. Even if 20% (10 billion) of the spam is sent
by bots, and there are (conservatively) 150 million bots,
then on average each bot must send at least 67 spams a
day. Since it is believed that a large fraction of bots send
very few spams each day [22], there must exist a signifi-
cant fraction of bots that send hundreds of spams per day.
Given that the average user only keeps their computer on
for a few hours each day, such a bot must therefore send
50 or more spams per hour to meet its quota.

A host that has recently sent large amounts of e-mails
may be a spam-bot. Consequently, any e-mail coming
from such hosts is potentially spam, and if the source has
a dynamically allocated IP address3 (or simply a dynamic
IP address)4 and the sender is not in the recipient’s ad-
dress book or list of past recipients or senders, then it is
almost certain that the e-mail is spam.

Since a spam-bot does not necessarily target multiple
recipients within a single domain, determining whether
a bot is sending spam is inherently a collaborative ef-
fort. Trinity, is a distributed spam detection system that
identifies the source of each e-mail and then stores this
information in a distributed database that is used and up-
dated by all peers. Trinity depends on the collabora-
tion of peers: as the number of peers increases, spam-
bot identification improves because the sample size in-
creases. In essence, an effective countermeasure to dis-
tributed spamming requires a distributed effort.

Classification consists of several distinct parts: identi-
fying the source of e-mails, keeping track of how many
e-mails were recently sent by a source, and disseminat-
ing this information for the purposes of classifying fu-

DHT

SpamAssasin

Trinity plug−in

Source Ident.

MTA

DHT Peer

ture e-mails. Additionally, these tasks must be coordi-
nated for each e-mail as it is received by an MTA. Thus,
Trinity comprises four parts that perform the respective
functions.

When an e-mail arrives at an MTA, the message is
passed to a general spam classification framework such
as SpamAssassin [27]. The message is passed to a vari-
ety of plug-ins (within SpamAssassin), including a Trin-
ity plug-in, which is responsible for coordinating the
source identification and source tracking tasks, and em-
bedding the resulting classification in the e-mail.

The plug-in first passes the message envelope to the
source identification server, a locally running process,
that determines the source of the e-mail—a challenging
task—and whether the source of the e-mail is a static or
dynamic IP address.5 If the source has a static IP ad-
dress, we can use the existing blacklist mechanisms, i.e.,
if its source is listed in one of the blacklists, it can im-
mediately be classified as spam. In this case, no further
processing is necessary. Otherwise, if the source has a
dynamic IP address, the address is returned to the plug-
in for the next stage.6

Second, the plug-in updates the distributed database
used to track e-mail sources. A local server, which is
part of the distributed database, is assumed to run on the
same host as the MTA or on a nearby host. The server
propagates the update to the distributed database, stores
chunks of the distributed database, and caches updates
and queries for the local MTA.

Third, the plug-in queries the distributed database, via

3



the local server, about the number of e-mails that were
recently sent, typically within an hour, from the same
source as the current e-mail—this is the sender score.
For efficiency reasons, this query may occur as part of
the database update. If the sender score is high, i.e.,
many e-mails were sent, then the score is appended to
the e-mail’s envelope and returned to the spam frame-
work itself. If the score is low, this indicates that either
the source has not sent many e-mails recently, or that
the e-mail may be one of the first of many e-mails that
were sent. To distinguish these two cases, the plug-in
can quarantine the message for a short period of time,
and then perform the query again. The score from the
second query is then appended to the e-mail’s envelope
and returned to the framework. In our system the quar-
antine has minimal impact because it is only used for e-
mails arriving from senders with dynamic IP addresses,
and the length of the quarantine is on the order of min-
utes, not hours, as in other systems [4, 14].

At this point the back-end processing by Trinity is
complete. The e-mail, with its appended envelope, is
stored to be consumed by a mail client. Modern mail
clients have a highly configurable rule-based filter that
can be used to complete the spam classification. Specifi-
cally, a simple rule can be used to determine if an e-mail
with a high score is from an unknown sender—a sender
is unknown if it is neither in the address book, or in the
sender or recipient lists. If so, the e-mail can be junked.

The key technical challenges of Trinity is to correctly
identify the source of an e-mail, to quickly and effi-
ciently update the distributed database, to ensure that the
database is not susceptible to poisoning from malevolent
peers or to denial-of-service attacks, and to ensure that
the system scales well, is easy to install and maintain,
and does not require excessive resources.

As described in [11] determining the true source of an
e-mail is difficult because the sender or any malicious
mail relay can add false Received lines to the e-mail’s
envelope—each relay through which an e-mail travels
must prepend a Received line to the e-mail’s envelope,
indicating the host from which the relay received the e-
mail. The Received line prepended by the first trusted
relay that received the e-mail contains the IP address of
the host from which it received the e-mail. This host is
considered to be the source of the e-mail. However de-
termining the first trusted relay is challenging.

Although each Trinity installation could maintain its
own complete database, this is not feasible—even though
the database would only be a couple gigabytes in size.
A database is useless unless it is promptly updated by
other Trinity installations whenever they receive new e-

mails. Since the number of e-mails sent per day is on
the order of 70 billion [28] and a significant fraction of
these e-mails would generate updates, a server that hosts
the entire database, and the connection to it, would be
swamped.

Trinity uses a distributed hash table (DHT), such as
Chord [30], as its database. This is ideal, since the up-
dates are commutative, may occasionally be lost, and the
update latency is on the order of seconds. To minimize
the amount of traffic generated by updates or queries
Trinity uses UDP for both, especially since both the up-
date and the query contain very little data.

Lastly, it is likely, that spammers would try to develop
countermeasures against Trinity. The three main ap-
proaches would be to fool the source identifier, to poison
the distributed database via false updates and malevolent
peers in the distributed database, and to launch denial-
of-service attacks against the distributed database with
the very same botnets. The first countermeasure must be
dealt with by the source identifier. The latter two coun-
termeasures must be considered when designing the dis-
tributed hash table. These issues must be addressed to
ensure that Trinity remains effective in today’s Internet
environment. In the next sections we discuss how some
of these issues can be addressed.

4 E-mail Source Identification

In a perfect world, the source of an e-mail can easily be
identified from the Received lines as described in RFC
2821 [18]; these lines are found in the envelope of the
e-mail. Every time the e-mail passes through a SMTP
relay, the relay must prepend an additional Received line
to the list of Received lines and must not modify any of
the other Received lines [18]. Each Received line must
identify from which host the e-mail was received and by
which host the e-mail was received. Thus, the Received
lines form a kind of a linked list that links the current
recipient of the e-mail to the sending host—in theory.

Unfortunately, there is nothing to prevent a malicious
sender from adding one or more Received lines to the en-
velope. Furthermore, if an e-mail passes through a ma-
licious relay, then all Received lines may be modified or
deleted. Fortunately, all is not lost.

We must assume that once the e-mail is received by a
trusted relay, say that of an ISP, that all relays through
which the e-mail passes post-hence are also trusted.
Thus, the Received lines added by these relays are cor-
rect. That is, the Received line added by the first trusted
relay, identifies the untrusted host that injected the e-
mail. The host may or may not be malicious, but for our

4



purposes, the host is considered the source of the e-mail.
The key challenge then is to identify this first trusted

relay, and its corresponding Received line, which con-
tains the de facto IP address of the sender. As was
pointed out in [11] this is not easy and in fact does not
have a deterministic solution. Fortunately, the problem
domain provides a reasonable heuristic to this problem.
Recall, that the reason botnets are a problem is because
the bots typically do not have static IP addresses. Thus,
we consider a relay trusted if it has a static IP address.

Typically, most relays are configured to receive e-mail
only from hosts that have a valid domain name and re-
verse DNS lookup entries. The main exception are relays
that receive e-mail from the ISP’s clients and relays it to
its destination. In this case, the relays only accept e-mail
from the ISP’s subnet and in many cases require client
authentication. These relays are the first trusted relays in
the delivery chain.

Trinity’s source identification process comprises two
phases: a preparatory phase and a traversal phase. The
first phase identifies the point from which the traversal
of Received lines is to begin. In many cases, once an
ISP’s ingress relay—the one listed in the ISP’s MX DNS
entry—receives an e-mail, it passes the e-mail through
zero or more additional relays before storing and pro-
cessing it. Since there is no need to check those relays,
the natural starting point is the ISP’s ingress relay—all
the relays prior to the ingress relay need to be checked.
Consequently, when a Trinity peer starts up, it must de-
termine the IP address of the ingress relay.

Unfortunately, this information cannot always be de-
termined from the MX entry [11] because the entry may
refer to a load-balancing router that distributes the SMTP
connections between several relays. There are several
approaches: First, if there is only one ingress relay, then
the MX entry is sufficient. The second option is to pro-
vide an explicit list of ingress relays. The third option
is to perform a kind of tomogram of the ingress relays
by asking a known (source) relay to probe the ISP’s
ingress relays. The source relay sends e-mails with spe-
cial X- lines to the mail exchanger listed in the ISP’s MX
record. These X- lines allow Trinity to separate these
probes from regular e-mails and extract the Received
line that identifies an ingress relay. Since the source re-
lay is known, the Received line in the probes’ envelope
that identifies the source relay also identifies one of the
ISP’s ingress relays. A sufficient number of probes will
identify, with high probability, all the ingress relays. In
all likelihood though, since the ISP’s administrators are
responsible for configuring both the ingress relays and
the source identifier, the former two approaches should

prove sufficient. Potentially, SPF [34] or DKIM [1] may
also be used to identify the relay that contacts the ingress
relay, making identification of the ingress relay unneces-
sary.

Assuming that the IP addresses of the ingress relays
are known, the preparatory phase simply scans the Re-
ceived lines from top to bottom, until a line that lists an
ingress relay is found. This is sufficient to complete the
preparatory phase.

The traversal phase begins at the Received line corre-
sponding to the ingress relay, and checks if the relay from
which the email was received has a static or dynamic IP
address. To do this several heuristics are used and we
are investigating others as well. These heuristics include
looking up the IP address in Policy Block Lists (PBLs),
such as the one maintained by Spamhaus [29], perform-
ing a reverse host lookup on the IP address, checking
whether the listed name, matches the one in the Received
line, and analyzing the name itself. For example, in many
cases, names that are permanently associated with dy-
namic IP addresses contain all or part of the IP address
in the name, as well as indicators, e.g., the word “dy-
namic”. Note, there is currently no fool-proof way to
distinguish between dynamically and statically allocated
IP addresses. To reduce DNS queries previously identi-
fied IP addresses are cached.

If the host listed in the current Received line is deter-
mined to have a dynamic IP address, then the traversal
phase completes and the resulting IP address is deemed
to be the source of the e-mail. Otherwise, the traversal
phase continues to the next Received line.7 The traver-
sal phase terminates if it runs out of Received lines—in
which case the source has a static IP address—or a host
with a dynamic IP address is found, i.e., an untrusted re-
lay, which is then assumed to be the source of the e-mail.
At this point, the source identification is complete and
the database is updated. Note: We are currently in the
process of designing more heuristics, and intend to im-
plement and test their efficacy.

As frameworks such as the Sender Policy Frame-
work (SPF) [34], or the DomainKeys Identified Mail
(DKIM) [1] are adopted, it may become easier to iden-
tify the source of the an e-mail, thus obviating the need
for ad-hoc source identification.

5 The Distributed Database

The distributed database is implemented using a dis-
tributed hash table, such as Chord [30]. First, the
database must handle billions of updates per day: even
though the updates are small, on the order of five bytes,

5



any centralized solution would be overwhelmed by the
sheer numbers. Second, hosts receiving the e-mails must
quickly and efficiently query and update the database.
Delays in receiving or processing the updates would ren-
der the system ineffective because peers could not effec-
tively gauge the number of e-mails that a host has re-
cently sent.

The database itself is relatively small, consisting of en-
tries that comprise about 12 bytes: the IP address, four 8-
bit counters, and a local timestamp that indicates the last
time that the counters were updated. The four counters
represent the number of e-mails sent by the host with the
corresponding IP address. Each counter denotes a quar-
ter of an interval, say an hour. That is, counter 0 stores
the number of sent e-mails in the last 15 minutes, counter
1 stores the number of sent e-mails in the preceding 15
minutes, and so on.

Consequently, it is trivial to update the counters. First,
compute the number of interval quarters that have passed
since the last update by using the current time and the
associated timestamp—say s quarters have passed. Shift
the counters appropriately, Ci = Ci−s, i ≥ s, where C0,
C1, C2, C3, are the four counters. Reset the remaining
counters, Ci = 0, i < s. Increment the counter C0,8 and
update the timestamp. The database can even be pruned
by a low priority process that removes entries with ex-
pired timestamps.

30 minutes later.

C0 C1 C2 C3 TimestampIP Address

13 8 5 3 1172000013207.161.17.96

1 0 13 8 1172001842207.161.17.96

Example of a database entry

Format of a database entry

counter reset and incremented

counter reset

counters shifted

timestamp updated

Post−update Update arrives 

This database is distributed among the peers that par-
ticipate in the DHT, where each peer is responsible for
entries containing IP addresses that map to it. Further-
more, these entries are forwarded to k of the peer’s
neighbours, a simple form of replication. Since the full
database would be at most a few gigabytes in size, each
peer would store on the order of 10 to 50 megabytes of
data (depending on number of participating peers), and
could keep a working copy in memory at all times.

An update to the database originates from the Trinity
plug-in at an MTA. The update consists of the source IP
address and a counter indicating how many e-mails were

received from the host.9 The update is sent to the local
peer that determines which peer is responsible for storing
the entry, based on the IP address, and forwards the entry.
Each peer caches other peers’ addresses for efficient op-
eration. All updates and queries are sent via UDP, since
a few lost updates does not adversely affect the system.
Once the update arrives at the destination peer, it is ap-
plied to the entry, and forwarded to the neighbour peers
via permanent TCP connections. Compared to the cost
of setting up and tearing down a TCP connection to send
an e-mail, the cost of an update is small. Since an update
simply increments a counter, updates are commutative,
meaning that the order in which they are applied doesn’t
matter.

The key challenge is to ensure that the update is deliv-
ered and applied within a short period of time. Since each
peer can keep the entire database in memory, and the cost
of applying an update is negligible, the primary latency is
delivery of the update. Since this takes O(log N) sends,
where N is the number of peers, it is difficult to imag-
ine a situation where the update is not received in under
a minute. Furthermore, since updates are commutative,
the order in which they arrive does not matter. Since
consistency is not required, the cost of replication, i.e.,
forwarding the update to the neighbour, is also small.

To reduce the number of updates several heuristics can
be used. The simplest heuristic is to cease updates for
spam-bots that have sent beyond a given threshold. For
example, if spam-bot has sent 100 e-mails in the last 10
minutes, there is little point in sending an update about
the 101st e-mail, particularly if any host that sends more
than 30 e-mails per hour is likely to be a spam-bot. An-
other heuristic is to delay updates for a short period of
time to see if the same host sends to the same MTA. In
this case the counter in the update is incremented. How-
ever, to ensure that the database is promptly updated, the
update should be sent within a short period of time.

Although it may seem like a good idea to map all IP
addresses from the same network to the same set of peers,
this creates a denial-of-service target, since the spam-
mers can then selectively attack parts of the DHT to mask
botnets in the corresponding network. This leads us to
the next challenge, how to deal with malevolent peers
and other countermeasures against Trinity.

6 Securing Trinity

To be effective Trinity must deal with two types of
threats. Database poisoning by malevolent peers and dis-
tributed denial-of-service attacks (DDOS). We consider
the latter threat first. To mitigate the usefulness of a

6



DDOS attack the entries are mapped to peers in such a
way such that no peer stores a significantly large frac-
tion of IP addresses from a particular network or region.
Consequently, a DDOS attack would have to attack a sig-
nificant fraction of the DHT in order to affect its func-
tionality. The decentralized nature of the DHT is its best
defense against DDOS attacks.

If a peer is attacked, its neighbours take over for it,
since each of them has a replica of the database fragment
for which the peer was responsible. Furthermore, since
Trinity only relies on recent data, neighbouring peers that
have not replicated the fragment can completely rebuild
the database within an hour, one interval, because all
data in the afore mentioned fragment becomes stale. The
short life span of the data obviates any need for compli-
cated and expensive replication procedures.

In some cases, for particularly poorly or improperly
configured networks, it is possible for fake updates or
queries to be sent with fake source addresses. To miti-
gate this problem, all queries and updates, sent from peer
to peer, simply include a small pairwise shared secret,
that is changed at regular intervals. Thus, false queries
and updates can be discarded. If the malevolent sender
uses its true IP address, the IP can be added to the peer’s
firewall’s blacklist, dropping all packets from the sender.
Queries and updates to the local peer from the Trinity
plug-in are done over a secure network segment, a per-
manent and secure TCP connection over a local segment,
or over a local connection if the peer and the MTA are
running on the same host.

Even if a malevolent update is successfully delivered,
all it does is increase the count of e-mails that some
host has sent. That is, it may increase the chance of a
false-positive, but cannot increase the chance of a false-
negative, which would be the goal of a spammer.

Unfortunately, there is little to prevent a spammer
from setting up their own peer and joining the DHT. Ba-
sic checks, such as ensuring that the peer is not in any
of the spam blacklists and that the peer has a static IP
address, eliminate the less determined spammers. How-
ever, no automated system can fully separate friend from
foe. Consequently, it is necessary to assume that malev-
olent peers will participate in Trinity and will be part of
the DHT.

This needs to be addressed at two levels. First, how
to protect the DHT from malevolent peers. Second, as-
suming the DHT is protected from malevolent peers,
how to protect the Trinity database and its functions
from being affected by malevolent peers. There has
been a significant amount of research into security is-
sues of peer-to-peer systems and the corresponding solu-

tions [2, 7, 20, 26, 33]. Roughly speaking, the issues can
be categorized either as as routing issues, where malev-
olent peers interfere with the delivery of an update or
a query; storage and retrieval issues, where malevolent
peers do not store, deny that they are storing, or falsify
data that they are responsible for; and denial-of-service
attacks that divert system resources [26]. Since these is-
sues are addressed in [2, 7, 20, 26, 33], we do not discuss
them here due to space considerations. However, we note
that one distinguishing feature of Trinity’s use of DHTs
is that the peers are expected to be up for extended peri-
ods of time, that is, the number of joins and leaves is ex-
pected to be small. Consequently, Trinity can take extra
time to validate new peers before allowing them to par-
ticipate in the DHT. Furthermore, since virtual hosts are
not useful for this application, they are disallowed. These
restrictions mitigate many of the security concerns.

Assuming that the DHT is functioning, the next chal-
lenge is to ensure that malevolent peers do not have a
significant effect, i.e., that a malevolent peer cannot with-
hold or falsify data for extended periods of operation.
This can be accomplished using two mechanisms: repli-
cation and reputation. First, we note that the updates are
replicated across a group of peers. Thus, instead of send-
ing the update or query to just a single peer, the query
or update can be sent to several peers, randomly chosen
from the group. The results of the queries can be com-
pared, against each other and against previous queries to
ensure that the responses are consistent. At this point
the reputation mechanism is used. The DHT can also be
used to store a reputation counter for each peer. If a peer
returns inconsistent responses, then the peer’s reputation
is decreased. The reputation is restored using the same
multicounter decay mechanism as described in the pre-
vious section. If the reputation of a host drops below a
threshold, it is excommunicated from the DHT. The key
point is that no single peer is trusted with a fragment of
the database. Instead, a group of peers is trusted with
fragment. The groups comprise a small number of peers
whose addresses are adjacent in the DHT, meaning that
a peer belongs to several groups. Since the chance of
two or more malevolent peers being in the same group is
negligible (for DHTs with sufficiently many peers), this
effectively ensures that malevolent peers cannot signifi-
cantly diminish the function of the distributed database.

The only other attack that malevolent peers could do
is send false updates, increasing the counts of various
hosts. However, since this can only increase the estimate
of how many recent e-mails a host has sent, it does not
diminish the ability of Trinity to identify potential spam-
bots. In theory, increasing the estimate of how many e-

7



mails a host sends can increase the false-positive rate.
However, to be noticeable, the malevolent peer or peers
must increase the estimates of many hosts. This would
require the malevolent peers to send updates at a notice-
ably faster rate. Furthermore, since these estimates decay
rapidly, the malevolent peers would have to continuously
send false updates. By tracking, as part of their reputa-
tions, the rate at which peers send updates, malevolent
peers can be identified and excommunicated.

7 Related Work

Traditional spam classifiers fall into one of two cate-
gories: list-based classification, such as the blacklists
published by Spamhaus [29], and content-based clas-
sifiers that analyze the content of the e-mail to clas-
sify it—commonly used methods include Bayesian fil-
ters [12, 23] and pattern matching [25]. The black-
lists [5, 15, 10, 28, 29] are either static lists that are peri-
odically updated by downloading new ones, or are stored
in remote databases, which are themselves updated on
a regular basis. A common technique, DNS Blacklists
(DNSBL) [15], uses the DNS system to store the black-
lists and serve the queries. Typically a mix of blacklists
is used [5, 16, 24], depending on the desired level of ag-
gressiveness and tolerance for false-positives. The effec-
tiveness of blacklists has been investigated in [17, 22].
While blacklists are effective against hosts with static
IP addresses, their response time is much too slow to
counter botnets.

Content-based classification analyzes the contents and
envelope of an e-mail using Bayesian networks [12, 23]
or pattern matching [25]. Such methods work well
against known spam. I.e., spam that has been seen in
the past and contains known strings or patterns, e.g.,
advertising the impotence drug of the month. Unfortu-
nately, the majority of e-mail clients now render Hyper-
text Markup Language (HTML) based e-mails, allowing
spammers many opportunities to fool the filters. Some
examples, include using embedded pictures, clever use
of different font sizes, and foreground and background
colours. Content-based filters require never-ending tun-
ing and adjustment in order to keep up with the spam-
mers’ latest tricks.

One approach to improve the responsiveness of the
content-based filters is to use a distributed database of
known spams [3, 9, 13, 19, 21, 31, 32]. When a peer
in these systems receives an e-mail that it (or a user)
classifies as spam, the distributed database is updated
with a signature of the e-mail’s contents. When an
MTA receives a e-mail it computes the e-mail’s signa-

ture and queries the database. If the signature is in the
database, the e-mail is classified as spam. The problem
with these approaches is similar to that of stand-alone
content-based classification. Namely, that spam-bots can
be programmed to sufficiently alter the content of each
e-mail such that each e-mail yields a unique signature,
even though they look the same.

Another approach is to adjust the e-mail system by us-
ing Sender Policy Framework [34] (SPF), which is an
extension to SMTP [18]. This scheme uses the DNS sys-
tem to specify which hosts may relay e-mail from a given
domain10. However, this system is ineffective against
botnets, since they typically use the domain’s own relay
which cannot distinguish between a host sending spam
and one sending a real e-mail. Another approach is Do-
mainKeys Identified Mail (DKIM) [1], which associates
a “responsible identity” with each e-mail. Allowing the
receiver to confirm the sender and origin of the email.
Unfortunately, this system does not prevent the bot from
using the identities stored on the hijacked computer and
sending email through the domain’s relays. It does how-
ever, make it easier to identify the source of the email.
Adoption, as in many other cases, may prove to be the
biggest hurdle for DKIM. Other approaches include forc-
ing ISPs to police their users, requiring SMTPS authenti-
cation, and rate-limiting the number of e-mails that a host
can send. Unfortunately, these approaches require the
ISPs to incur additional cost and compliance is optional,
meaning that many ISPs will not do this to avoid creating
additional inconveniences or hassles for their customers.

8 Discussion and Future Work

In this paper we described Trinity, a system that is de-
signed to identify spam originating from botnets. Trinity
is designed to be used in concert with existing spam clas-
sifiers and complements, rather than replaces, the use of
blacklists. The system is content-independent and does
not require additional investment in new infrastructure or
technology. Furthermore, Trinity is resilient to denial-of-
service attacks.

8.1 Deployment

Initially, the number of Trinity peers will invariably be
small. Since Trinity is a distributed system, this may
affect Trinity’s functionality with respect to load distri-
bution, security, and coverage. First, the load on Trinity,
the rate of updates, is generated by the peers. Hence, the
load is proportional to the number of peers and therefore
scales with the Trinity’s size.

8



Second, Trinity uses groups of peers to monitor each
other to ensure security. Initially, when there are few
hosts, it may not be possible to form sufficiently large
groups. However, at this stage, it is still possible to man-
ually verify, admit, and monitor potential peers. Once
the system has a sufficient number of peers, to form suf-
ficiently large groups, the system can begin to automat-
ically admit and monitor its peers. Furthermore, during
Trinity’s deployment it is less likely to present a target
since its coverage is limited by its size.

Third, Trinity relies on the collaboration of MTAs to
accurately gauge the number of e-mails coming from
a particular source, the primary challenge is to achieve
the necessary critical mass of peers—a standard problem
with any new technology. To facilitate this critical mass,
the Trinity plug-in can be used in “light mode”. In this
mode the plug-in collects the Received lines from incom-
ing envelopes, sanitizes them, and forwards the lines, via
UDP, to a remote peer that performs source identification
and updates the database. Such an approach would in-
crease Trinity’s coverage at a faster rate than its adoption.
The plug-in, running in “light mode”, can be included as
part of a typical SpamAssassin [27] deployment.11

8.2 Future Work

We are presently in the process of implementing Trin-
ity. Several issues still require investigation, such as the
heuristics for performing source identification and the
right trade-off between the security and weight of the
protocols. One important question is how many peers
must Trinity have before it is effective.

Acknowledgments

This work was supported by the National Science and
Engineering Research Council of Canada (NSERC) Dis-
covery research grant. We thank the referees and our
shepherd for all their helpful comments and suggestions.

References
[1] ALLMAN, E., CALLAS, J., DELANY, M., LIBBEY, M., FEN-

TON, J., AND THOMAS, M. Domainkeys identified mail
(dkim) signatures. http://www.ietf.org/internet-drafts/draft-ietf-
dkim-base-10.txt, 2007.

[2] CASTRO, M., DRUSCHEL, P., GANESH, A., ROWSTRON, A.,
AND WALLACH, D. Secure routing for structured peer-to-peer
overlay networks. In Proc. of the 5th ACM Symposium on Oper-
ating System Design and Implementation (2002).

[3] CHUNG, A., TARASHANSKY, I., VAJAPEYAM, M., AND
WAGNER, R. Spamstrangler: A chord-based distributed

spam detection tool. Tech. Rep. http://pdos.csail.mit.edu/6.824-
2002/projects/spamstrangler.ps, Massachusetts Institute of Tech-
nology, 2001.

[4] Ciphertrust. http://www.securecomputing.com/, 2007.

[5] Composite blocking list. http://cbl.abuseat.org/, 2007.

[6] COOKE, E., JAHANIAN, F., AND MCPHERSON, D. The zombie
roundup: Understanding, detecting, and disrupting botnets. In
Usenix Workshop on Steps to Reducing Unwanted Traffic on the
Internet (2005).

[7] DABEK, F., BRUNSKILL, E., KAASHOEK, M. F., KARGER, D.,
MORRIS, R., STOICA, I., AND BALAKRISHNAN, H. Building
peer-to-peer systems with Chord, a distributed lookup service.
In Eighth IEEE Workshop on Hot Topics in Operating Systems
(2001).

[8] DAGON, D., ZOU, C., AND LEE, W. Modeling botnet propaga-
tion using time zones. In Proc. of the 13th Annual Network and
Distributed System Security Symposium (2006).

[9] DAMIANI, E., DE VIMERCATI, S. D. C., AND SAMARATI, P.
P2P-based collaborative spam detection and filtering. In Proc. of
4th IEEE Conference on P2P (2004).

[10] Distributed sender blocking list. http://dsbl.org, 2007.

[11] GOODMAN, J. IP addresses in email clients. In First Conference
on Email and Anti-Spam (2004).

[12] GRAHAM, P. A plan for spam. In Reprinted in Paul Gra-
ham, Hackers and Painters, Big Ideas from the Computer Age,
O’Really, 2004 (2002).

[13] GRAY, A., AND HAAHR, M. Personalised, collaborative spam
filtering. In Fourth Conference on Email and Anti-Spam (2007).

[14] Ironport. http://www.ironport.com, 2007.

[15] IVERSON, A. Dnsbl resource. http://www.dnsbl.com/, 2007.

[16] IVERSON, A. Dnsbl statistics. http://stats.dnsbl.com/, 2007.

[17] JUNG, J., AND SIT, E. An empirical study of spam traffic and
the use of DNS black lists. In Proc. of the 4th ACM SIGCOMM
Conference on Internet Measurement (2004).

[18] KLENSIN, J. RFC 2821 – Simple Mail Transfer Protocol.
http://tools.ietf.org/html/rfc2821, 2001.

[19] KONG, J., BOYKINY, P., REZAEI, B., SARSHAR, N., AND
ROYCHOWDHURY, V. Scalable and reliable collaborative spam
filters: Harnessing the global social email networks. In 3rd
Annual Workshop on the Weblogging Ecosystem: Aggregation,
Analysis and Dynamics (2006).

[20] KUNZMANN, G., AND BINZENHOEFER, A. Autonomically im-
proving the security and robustness of structured P2P overlays.
In International Conference on Systems and Networks Communi-
cations (2006).

[21] PRAKASH, V. Vipul’s Razor. http://razor.sourceforge.net/, 2007.

[22] RAMACHANDRAN, A., DAGON, D., AND FEAMSTER, N. Can
DNS-based blacklists keep up with bots? In Third Conference on
Email and Anti-Spam (2006).

[23] SAHAMI, M., DUMAIS, S., HECKERMAN, D., AND HORVITZ,
E. A bayesian approach to filtering junk e-mail. In AAAI-98
Workshop on Learning for Text Categorization (1998).

[24] SenderBase. http://www.senderbase.org, 2007.

[25] SHOWALTER, T. RFC 3028 – Sieve: A Mail Filtering Language.
http://tools.ietf.org/html/rfc3028, 2001.

9



[26] SIT, E., AND MORRIS, R. Security considerations for peer-to-
peer distributed hash tables. In International Workshop on Peer-
to-Peer Systems (2002), vol. 2429 of Lecture notes in computer
science.

[27] SpamAssassin. http://spamassassin.apache.org/, 2007.

[28] SpamCop. http://www.spamcop.net/, 2007.

[29] Spamhaus. http://www.spamhaus.org/, 2007.

[30] STOICA, I., MORRIS, R., KARGER, D., KAASHOEK, M. F.,
AND BALAKRISHNAN, H. Chord: A scalable peer-to-peer
lookup service for internet applications. In Proc. of the ACM
SIGCOMM 2001 Conference (2001).

[31] TOBIN, F. Pyzor. http://pyzor.sourceforge.net/, 2007.

[32] VIXIE, P., AND RHYOLITE LLC. Distributed Checksum Clear-
inghouse. http://www.rhyolite.com/anti-spam/dcc/, 2007.

[33] WALLACH, D. A survey of peer-to-peer security issues. In
ISSS (2002), M. Okada, B. Pierce, A. Scedrov, H. Tokuda, and
A. Yonezawa, Eds., vol. 2609 of Lecture Notes in Computer Sci-
ence.

[34] WONG, M., AND SCHLITT, W. RFC 4408 – Sender Policy
Framework (SPF) for Authorizing Use of Domains in E-Mail,
Version 1. http://tools.ietf.org/html/rfc4408, 2006.

Notes
1Modern mail clients track email addresses to which the recipient

has sent email and from which the recipient has received valid email.
2Some estimates are much higher.
3Spamhaus [29] keeps a Policy Block List (PBL) of IP addresses

that are known to be dynamically allocated.
4A host with a statically allocated IP address is said to have a static

IP address.
5We do not foresee any difficulties with private or internal (back-

net) IP addresses. These addresses are typically used for home or small
office networks. In this case, the source is considered to be the entire
private network whose single public IP address is assigned by its ISP.

6Keeping track of the number of emails sent by a source with a
static address makes no sense, since hosts with static addresses, unlike
those with dynamic addresses, are likely to be multiuser systems that
send many e-mails in a short period of time.

7Note: we assume that e-mail from sources with static IP addresses
are caught by the blacklists.

8We assume that updates are delivered within a minute of the time
that they are generated.

9It is common for a spam-bot to send multiple e-mails to the same
recipient consecutively.

10Microsoft had its own version called SenderID.
11To facilitate Trinity’s deployment, migration to a full peer involves

running a single daemon. The plug-in can easily check if the daemon is
running and run in “normal mode”. To run the peer on a different host,
some additional configuration is required.

10


