

DomainKeys Identified Mail (DKIM):
Using Digital Signatures for Domain Verification

Barry Leiba
IBM Research
Hawthorne, NY

leiba@watson.ibm.com

Jim Fenton
Cisco

San Jose, CA

fenton@cisco.com

ABSTRACT

Email protocols were designed to be flexible and forgiving,

designed in a day when Internet usage was a cooperative thing. A

side effect of that is that they were not designed to provide

protection against falsification of a message’s address of origin,

referred to today as “spoofing”. DomainKeys Identified Mail

(DKIM) defines a mechanism for using digital signatures on email

at the domain level, allowing the receiving domain to confirm that

mail came from the domain it claims to. In conjunction with the

forthcoming DKIM sender signing practices specification, the

receiving domain may also have more information for deciding

how to treat mail without a valid signature. The use of DKIM

signatures and signing practices gives sending domains one tool to

help recipients identify legitimate messages from their domain,

and a reliable identifier that can be used to combat spam and

phishing.

1 INTRODUCTION

Early antispam filtering involved “blacklisting” the senders of

spam – refusing to accept or deliver mail from email addresses

known to send spam. Unfortunately, the Internet standards for

email do not prevent the sender from lying about his identity, at

the protocol level [8], in the mail “headers” [14], or both. This

“spoofing”, as it’s called, not only allows spammers to get around

email-address blacklists, but also to lend credibility to their

messages by spoofing a reputable domain. Initially a way simply

to convince recipients to open the messages, rather than to delete

them, spoofing reputable domains has evolved into a con-game

called “phishing”, resulting in estimated losses in 2004 of between

one and two billion dollars [15],[9].

Clearly, something must be done to curtail spoofing; the ability to

send messages while purporting to be another sender is in most

cases undesirable. While curtailment will not stop phishing, and

while spoofing cannot be stopped entirely without significant (and

arguably undesirable) effects on Internet email as it is known

today, making spoofing more difficult and providing domains

with ways to protect their names and reputations are important

steps against spam and phishing.

There have been two broad mechanisms proposed for domain

validation – verifying that mail did or did not come from the

domain it claims to have come from. One uses IP address; the

other uses digital signatures. In the former category are SPF

(Sender Policy Framework [16]), and Sender ID [11], related

techniques that differ in some details. CSV (Certified Sender

Validation [4]) also falls into this category.

In the second category are techniques that have the sender, or the

sending domain, place a digital signature on the message. The

signature can be verified later, by the recipient or by the receiving

domain, and the verified signature can be used as evidence that

the mail originated from where it says it does.

The two categories each have advantages, and are not in

competition. It is important to note, in this discussion, that the use

of many techniques, together, is the most effective way to combat

spam and related maladies (phishing, viruses and worms, and

other malware distributed through email) [10]. Discussion of the

advantages and disadvantages of the two categories is outside the

scope of this paper, which will focus on the design and

deployment of one particular specification: DomainKeys

Identified Mail.

The remainder of this paper will give an overview of DKIM, will

discuss details of the mechanisms used and some of the choices

made, and will show some practical deployment experience.

2 AN OVERVIEW OF DKIM

The concept behind DKIM is simple: If you receive a message

from me bearing a valid digital signature, then you can be sure

that it actually came from me. There are signature techniques

already standardized for applying signatures to email, such as

S/MIME [13] and OpenPGP [3], although the meaning of these

signatures is subtly different from that of a DKIM signature.

There are a few problems, though, with using these pre-existing

techniques:

1. They assume that the recipient’s mail system knows how to

deal with the signed messages. If it does not, the recipient sees a

message cluttered with unintelligible things.

2. The message signature formats do not sign the message

headers, and we’d like to protect the headers under the signature.

There are ways to accomplish that with S/MIME and OpenPGP,

but they result in an even worse experience for non-compliant

recipients.

CEAS 2007 – Fourth Conference on Email and Anti-Spam, August 2-3,

2007, Mountain View, California USA

3. There is no mechanism, in the general case, for

communicating the knowledge that I sign all my mail. What can

work fine for pairs of known communication partners does not

work in an environment where you want to receive mail from an

Internet full of previously unknown senders.

Furthermore, there is a difference in the assertions made by

DKIM from those made by S/MIME and OpenPGP. DKIM is

designed to provide the domain owner with control over the use of

addresses in the domain, and the validity of keys used to sign

messages in the domain is under the domain owner’s control. On

the other hand, the keying models used by S/MIME and OpenPGP

do not necessarily involve the participation of the domain owner.

This distinction becomes important when one considers that an

ex-employee of a corporate domain, or an ex-customer of an ISP,

might have a valid OpenPGP key or S/MIME certificate even

though they no longer are authorized to use their former addresses

in the domain.

DKIM defines a mechanism that “corrects” these problems by…

1. …putting the signature information into the message in a

way that is transparent to most end users, and to systems that do

not understand the signature mechanism.

2. …allowing the signer to include selected headers.

3. …defining, in an accompanying specification, “sender

signing practices”, allowing senders to communicate information

about their practices to potential recipients.

The DKIM base specification [1] tells signers how to create the

signatures and include them in their messages, and tells verifiers

how to interpret and verify the signatures. The DKIM signing

practices specification [2] tells senders how to specify their

signing practices, and tells verifiers how to retrieve that

information and use it. Taken together, the two specifications

provide one method of defense against spoofing.

The DKIM base specification has recently been published (May

2007) by the IETF as a Proposed Standard, RFC 4871. The

details of the base specification are, therefore, stable.

2.1 The Scope of DKIM

In the introductory discussion above, we talked about signing mail

between “you” and “me”. While DKIM can be used with that

scope, it is not how DKIM is intended to be deployed. As

suggested by the name, “DomainKeys Identified Mail”, it is

intended to be used at the domain level. A typical DKIM

deployment would have a message signed by a mail transfer agent

(MTA) of the sending domain before the message is sent out of

that administrative domain. When the message reaches the

domain of its intended recipient, an MTA in that receiving domain

would verify the signature. Of course, any intermediate domain

could also verify the signature, and could add its own signature as

well, adding it to or replacing the original. Each of these cases

will be discussed below in more detail.

The basic use case is shown in Figure 1, where

jane@example.com sends a message to john@example.net. In

this case, the DKIM signing is done at gway.example.com, and

the verification is done at inet.example.net.

Because of this scope, most of the discussion in this paper will

refer to the sending domain and the receiving domain, and will

call them the signer and the verifier, respectively. We will

occasionally make the distinction, as needed, between the sending

domain and the individual sender, and between the receiving

domain and the individual recipient.

2.2 What DKIM Does for the Signer

DKIM signatures allow a signer to take responsibility for having

placed a message into the network. The addition of signing

practices allows a sending domain to convey information to

verifiers about how it chooses to sign the mail it originates. This

can give a domain the ability to defend its name against improper

use, and to protect its reputation (see the discussion of signing

practices, below; this advantage is limited, in the short term, until

most recipients verify DKIM signatures). It may also allow

signed mail to be handled preferentially by receiving domains that

“trust” the sending domain in some sense.

2.3 What DKIM Does for the Verifier

DKIM signatures allow a verifier to determine that an email

message did, indeed, come from the domain it says it did. This

information can allow a verifier to “whitelist” a sending domain,

for example by permitting verified messages from that domain to

bypass more stringent inspection – inspection that may take more

time and resources, and might be subject to false positives that

could prevent the delivery of legitimate mail. Blacklists of signed

domains can work in a similar fashion, although the case for

whitelisting is more compelling. Note that signatures, by

themselves, do not give verifiers any useful information about

unsigned mail.

The addition of signing practices does provide such useful

information, for sending domains that publish practices. By

saying, for example, “We sign all mail originating from our

domain,” they allow the verifier to make a decision about how to

handle unsigned mail – in this case, a verifier may choose to treat

Figure 1

an unsigned message with extra suspicion, or to discard it

outright, at its discretion.

2.4 What DKIM Does NOT Do

This cannot be over-emphasized: DKIM is not, directly, an

antispam technique. Rather, DKIM is expected to enable

antispam and anti-phishing mechanisms, by making it harder to

spoof legitimate domain names that participate in DKIM signing.

DKIM does not provide encryption, nor any other privacy

features. Further, while its design allows for signing authority to

be delegated from the domain owner to individual users, it is not

meant for the use cases for which S/MIME and OpenPGP were

designed. DKIM signers are making no assertions about having

been the author of the content of the messages. For those sorts of

features, S/MIME or OpenPGP are what senders should use (and

DKIM can still work on top of that).

DKIM does not guarantee that a signed message will arrive

undamaged. While DKIM pre-processes messages to minimize

the chance of corruption (see the discussion of canonicalization,

below), MTAs and mail gateways do change headers and bodies

of email messages in ways that may make signatures unverifiable.

3 DKIM SIGNATURES

The DKIM specifications (q.v.) are the normative sources for the

details of signatures, signing practices, and verification, and we

will not repeat them here. This section, and the ones that follow,

are meant to give enough information to understand how the

system works – how signatures are created, represented, and

verified, and what the signing practices do.

Once a signer has decided to sign a message, it must take the

following steps, each of which we will discuss in more detail

below:

1. Begin building the DKIM signature header.

2. Canonicalize and hash the message.

3. Select headers to be included in the signature.

4. Generate a cryptographic hash of the canonical message.

5. Generate a digital signature of the hash.

6. Add the DKIM signature header to the message.

3.1 The Signature Header

The DKIM signer must begin building the DKIM-Signature

header now, since choices made through the process will be

included in the header, and the header itself (minus the signature

data, of course) will be covered by the signature. The first choices

to go into the header are the domain and identity to be signed, and

the selector to be used to identify the signing key.

In the simplest use case, the domain of the signing entity (the

“d=” field in the signing header) is, of course, the domain doing

the signing, and the identity of the signing agent (the optional “i=”

field) is the same. In the example in Figure 1, above,

gway.example.com would use d=example.com, and would omit

the identity field. But suppose example.com were a hosting

service, hosting different customers at bank.example.com and

store.example.com. The hosting service might offer DKIM

signing as part of the service, but would want to identify these

separately. In that case, a message signed for the latter might use

d=example.com; i=@store.example.com.

In order that different keys may be used in different circumstances

for the same signing domain (allowing expiration of old keys,

separate departmental signing, or the like), DKIM defines a

selector, a name associated with a key, which is used by the

verifier to retrieve the proper key during signature verification.

The selector goes into the “s=” field.

The “q=” field must contain the name of the mechanism to be

used to retrieve the verification key. This field exists to allow

extension of DKIM to various key-management and key-

distribution services. The current DKIM specification defines

only one value, q=dns, which tells the verifier to retrieve the key

using Domain Name Service (DNS), as described in the

specification.

3.2 Canonicalization

The next choices to go into the signature header are the

canonicalization algorithms for the headers and for the body. The

names of these algorithms go into the “c=” field (as, for example,

“c=simple/simple”).

Canonicalization is necessary because of the long history of

Internet email, the changes that have been made through that

history, and the uncertainty of what a message may encounter en

route to its destination. All email was once 7-bit US-ASCII, and,

while much of the Internet now supports 8-bit ASCII, having that

support at every node the message will traverse is uncertain.

There are other, similar issues involving character encodings used,

treatment of trailing white-space in message lines, “folding” and

“unfolding” of header lines [14], and more.

The intent of canonicalization is to make a minimal

transformation of the message (for the purpose of signing; the

message itself is not changed, so the canonicalization must be

performed again by the verifier) that will give it its best chance of

producing the same canonical value at the receiving end. DKIM

defines two header canonicalization algorithms (“simple” and

“relaxed”) and two for the body (with the same names).

Experimentation so far has shown that if messages are sent with

proper standard character encodings, “simple” is generally

sufficient for the body.

Following the canonicalization process, the signer calculates a

hash of the canonicalized message body using a hash algorithm as

described in Section 3.4. The resulting “body hash” value

becomes part of the DKIM-Signature header field, and provides

additional information for diagnosing invalid signatures.

3.3 Selecting Header Fields

DKIM allows the signer to choose to sign some or all of the

message header fields. Since many of the header fields do not

Figure 2

DKIM-Signature: a=rsa-sha1; q=dns/txt; c=simple/simple;

 d=example.com; s=appliances; i=@store.example.com;

 t=1117574938; x=1118006938; h=from:to:subject:date;
 bh=alIzndU2Nzg5jsEypzQ1njc4OTAxejr0NTY3ODkwdTI=;

 b=dzdVyOfAKCdLXdJOc9G2q8LoXSlEniSbav+yu

 U4zGeeruD00lszZVoG4ZHRNiYzR

contain information significant to the sender or recipient of the

message, signers might choose not to sign them all. Header fields

are the parts of the message that are most vulnerable to change in

transit, so leaving insignificant header fields unsigned may

increase the chance that the signature can be successfully verified

(at the expense of allowing some tampering, so the signer must

make a trade-off here).

Because end-user mail programs (mail user agents, or MUAs)

usually display the value of the message’s From header to the end

user, and since that is the primary target of spoofing, we consider

it important that that header field be signed, and so DKIM

requires the inclusion of From in the list of signed header fields.

Apart from those, DKIM strongly recommends the signing of

Subject, Date, and all the MIME headers (such as Content-Type;

note that MIME headers on message parts are not part of the

message headers, but are automatically signed as part of the

message body). It specifically advises against signing headers

known to be removed or modified in transit (such as Return-

Path), and suggests signing all others (the other side of the trade-

off mentioned above).

The signer puts the list of the header names that will be signed

into the “h=” field of the signature header. Header fields are

signed in the order that they appear in this field, so the signature

will be robust against header reordering in transit. The signature

header itself (DKIM-Signature), absent the signature (the value of

the “b=” field) is always signed, and is not explicitly listed in the

list of signed headers.

3.4 The Hash

DKIM allows for multiple hash and signature algorithms, to

provide for a transition to newer algorithms as it becomes

advisable to switch to them. Unlike the case with HTTP clients

and servers, for example, where an encryption suite can be

negotiated at the time of the transaction, Internet email requires us

to make a static choice and hope that the recipient understands the

suite we have chosen. It is therefore not the intent to support

multiple algorithms at the same time except to provide for such

transitions.

There is currently one hash algorithm allowed by the DKIM

specification: SHA-1 [5]. While hash collision issues have been

discovered with SHA-1, we believe that those issues are not

relevant to DKIM at this time (see the DKIM specification for a

discussion of this). Still, transition to SHA-256 [ibid.] is likely

soon, and might likely happen before DKIM becomes a Proposed

Standard.

The hash algorithm name is the second part of the value of the

“a=” field in the signature header (see below), and the hash is

performed on the catenation of the canonical set of signed

headers, which includes the body-hash value in the DKIM-

Signature.. Before the combined hash is done, the signer may add

optional “t=” and “x=” fields to the signature header, to specify

the time the signature is being created and the time the signature

will expire. The signer may also add the optional “l=” field to

specify the body length that has been signed, which will allow the

verifier to easily determine if additional text has been appended to

the message in transit (as is done by some mailing-list handlers

and forwarding services).

3.5 The Signature

As with hash algorithms, DKIM allows for transition of

encryption algorithms by naming the algorithm in the “a=” field.

The only currently supported encryption algorithm is “rsa”

(PKCS#1 [7]), so signers must currently use a=rsa-sha1 in their

DKIM signature headers.

The signer signs the hash, using the specified encryption

algorithm, puts the resulting signature into the “b=” field of the

signature header, and adds the signature header to the beginning

of the message header fields. An example of a completed

signature header is shown in Figure 2.

4 DKIM SIGNING PRACTICES

Sender signing practices are a less-mature aspect of DKIM, and

more experimentation and experience is needed to iron out the

final details. We will describe here the current specification and

discussions, and the issues in question.

As currently defined, senders may say one of the following things

in their signing practices:

1. All messages from this entity are signed. Signatures created

by third parties (mailing lists, etc.) are acceptable.

2. All messages from this entity are signed, and signatures

created by third parties should not be accepted.

Signing practices can be defined separately for subdomains, with

the parent domain’s practices taking effect for unspecified

subdomains. A bank that worries about phishing attacks against

its customers could, for instance, create two subdomains, and use

one (call it official.bank-example.com) for sending official mail,

and the other (say, people.bank-example.com) for email that its

employees use for less-sensitive situations, such as subscribing to

(and posting to) mailing lists. The former would use signing

practice 2, while the latter might use practice 1, or even omit the

specification of signing practices altogether. Customers would be

told to expect that all official mail from the bank would come

from official.bank-example.com, and that any mail from addresses

there that did not have a verified signature should not be believed.

There are still many considerations of how this will actually work,

what heed will be paid to the signing-practices information, what

unintended assumptions will be made by verifiers, and how this

may be attacked by spammers and phishers. This aspect of DKIM

will be evolving over the coming months, as there is more

community discussion and more experimentation.

5 DKIM VERIFICATION

When a DKIM-compliant MTA receives an email message, that it

decides it must verify (in the example in Figure 1,

inet.example.net has received a message from

gway.example.com), the message may be signed, or unsigned.

The message is considered to be signed if there is a valid DKIM-

Signature header. The verifier must carefully check the signature

header for validity.

5.1 Verifying a DKIM Signature

Using the contents of the i=, d=, and s= fields in the signature

header, the verifier determines the desired key identity, and then

uses the q= field and retrieves the key from the specified key

store. For q=dns, the key is retrieved by getting DNS TXT

records for “selector._domainkey.domain” (for the example in

Figure 2, the records retrieved would be for

appliances._domainkey.example.com (note that it does not use

store.example.com, so in the case described there it is up to the

example.com domain to keep track of which selectors are

associated with which hosted subdomains). The verifier must

then validate the retrieved key record, and extract the public key

from it. Any failures in this process result in the signature’s being

declared invalid.

The verifier now uses the c=, h=, and l= (if present) fields to re-

create the canonical message as originally signed. Using the a=

field to determine the hash and encryption algorithms, it then

computes the hash on the canonical message, decrypts the

signature, and compares the two resulting hash values. If they are

the same, then the signature is verified. If they are not, the

signature is declared invalid.

5.2 Checking the Signing Practices

If there is no valid signature, or if the signing identity does not

match the address in the message’s From header, the verifier must

check the signing practices of the domain in the From address.

The verifier retrieves the policy through a DNS query. The

domain for the query is obtained from the From address (see the

signing practices specification [2] for more details, but, again,

remember that this is still in flux).

5.3 The Verifier’s Decision

Ultimately, what the verifier does with all this information –

whether a signature was present or not, whether it verified or not,

what the sender’s signing practices say – is entirely up to the

verifier. Verifiers may certainly treat messages with failed

signatures as being more “suspicious” than those lacking

signatures, but there are reasons for message signatures to fail

(due to changes in transit) that do not reflect on the legitimacy of

the message. Similarly, if the absence of a signature is considered

worse than a failed signature, spammers will simply learn to put

fake signatures on messages.

So the decision of what to do is a complex one, and involves more

knowledge than DKIM alone provides. Verifiers may learn from

patterns that they see themselves. Reputation and accreditation

services may arise to provide recommendations beyond what the

senders’ own signing practices suggest. As noted before, the

information can be used to help decide whether to subject the

message to more scrutiny, with more or less aggressive spam

filters, or to allow the message to bypass such processing.

Finally, the verifier may choose, apart from the options above, to

convey some or all of the information to the final recipient of the

message. Eventually, with a standardized mechanism to convey

this information, MUAs can use this to alert the user to the

trustworthiness (or lack thereof) of the message. For example, an

MUA might display a verified From address in a different way

than one that is not verified, so when a user gets mail from her

bank, she can glance at the From field and make sure it’s green

(or has a check mark next to it, or some such indication). While

DKIM is designed to operate in the infrastructure, MUA support

will be key to maximizing its value.

6 DKIM DEPLOYMENT EXPERIENCE

At this writing there are a dozen or so independent

implementations of DKIM that have been tested for

interoperability. Some commercial products are available with

DKIM signing and/or verification capability and some major

domains are working on implementing the IETF-approved

specification, although DKIM signatures are not yet being widely

used.

DKIM (and its predecessor, DomainKeys) has received sufficient

usage to demonstrate that it meets its goal of providing a signature

that survives (maintains its validity) through the Internet mail

system. This includes the use of “transparent forwarders” to

allow recipients to use email addresses (such as college alumni

association addresses) that are independent of their Internet

service providers.

We have observed more than 20,000 domains producing messages

with DKIM signatures, but we note that some of these are

“disposable” domains which have been observed to send mail

only for short periods of time. As with SPF, its use by domains of

questionable reputation was expected (remember that neither

DKIM nor SPF is meant to “identify” spam), and highlights the

need for domain reputation and accreditation services. Some such

services exist and have begun work on incorporating DKIM in

their processes.

One area requiring further study is the use of DKIM signatures by

mailing lists. Some mailing lists modify messages, by adding

information relating to the mailing list, for example, in a manner

that invalidates the message signature (such as prepending the

mailing-list name to the subject). Such mailing lists can and

should sign the messages following modification, but there are no

known mailing lists doing so at this time.

7 CONCLUSIONS

The ability to spoof the origin addresses of messages is a design

characteristic of Internet mail that has legitimate as well as

illegitimate uses. Systems that authenticate email messages must

therefore be flexible enough to accommodate legitimate uses of

spoofing, such as by mailing lists.

DKIM is designed with these characteristics in mind. As with any

message authentication system, it is not a “magic bullet” to solve

spam and phishing, but provides useful information about the

origin of messages to form a basis for the application of whitelists,

reputation, and accreditation of senders’ email addresses.

8 ACKNOWLEDGEMENTS

The authors thank the other members of the DKIM design team,

who worked diligently to produce a solid specification. Of special

note are Mike Thomas of Cisco Systems, and Mark Delany and

Miles Libbey of Yahoo!, all co-authors of the original

specifications that became DKIM; and Eric Allman of Sendmail

and Jon Callas of PGP Corporation, who spent a great deal of time

and effort as editors of the final specification.

9 REFERENCES

[1] Allman, E., Callas, J., Delany, M., Libbey, M., Fenton, J.,
and M. Thomas, “DomainKeys Identified Mail (DKIM)”, Internet

Engineering Task Force, RFC 4871, May, 2007.

[2] Allman, E., Delany, M., and J. Fenton, “DKIM Sender
Signing Practices”, Internet Draft, http://www.ietf.org/internet-

drafts/draft-allman-dkim-ssp-02.txt (work in progress), August,

2006.

[3] Callas, J., Donnerhacke, L., Finney, H., and R. Thayer,
“OpenPGP Message Format”, Internet Engineering Task Force,

RFC 2440, November, 1998.

[4] Crocker, D., Otis, D., and J. Levine, “Client SMTP
Authorization (CSA)”, Internet Draft,

http://www.ietf.org/internet-drafts/draft-crocker-csv-csa-00.txt

(work in progress, expired), October, 2005.

[5] Federal Information Processing Standards (FIPS)
“Publication 180-2, Secure Hash Standard (SHS)”, U.S.

DoC/NIST, 1 August, 2002.

[6] Fenton, J. “Analysis of Threats Motivating DomainKeys
Identified Mail (DKIM)”, Internet Engineering Task Force, RFC

4686, September, 2006.

[7] Jonsson, J. and B. Kaliski, “Public-Key Cryptography
Standards (PKCS) #1: RSA Cryptography Specifications Version

2.1”, Internet Engineering Task Force, RFC 3447, February, 2003.

[8] Klensin, J., editor “Simple Mail Transfer Protocol”, Internet
Engineering Task Force, RFC 2821, April, 2001.

[9] Leahy, P. Statement introducing the “Anti-Phishing Act of
2004” on the US Senate floor,

http://leahy.senate.gov/press/200407/070904c.html,

Congressional Record, July, 2004.

[10] Leiba, B. and N. Borenstein, “A Multifaceted Approach to
Spam Reduction”, Conference on Email and AntiSpam 2004,

July, 2004.

[11] Lyon, J. and M. Wong, “Sender ID: Authenticating E-Mail”,
Internet Engineering Task Force, RFC 4406, April, 2006.

[12] Lyon, J. “Purported Responsible Address in E-Mail
Messages”, Internet Engineering Task Force, RFC 4407, April,

2006.

[13] Ramsdell, B., editor “S/MIME Version 3 Message
Specification”, Internet Engineering Task Force, RFC 2633,

April, 1999.

[14] Resnick, P., editor “Internet Message Format”, Internet
Engineering Task Force, RFC 2822, April, 2001.

[15] Rosencrance, L. “Trusted Electronic Communications Forum
aims to fight online fraud”,

http://www.computerworld.com/securitytopics/security/story/0,10

801,93871,00.html, Computerworld, June, 2004.

[16] Wong, M. and W. Schlitt, “Sender Policy Framework (SPF)
for Authorizing Use of Domains in E-MAIL, version 1”, Internet

Engineering Task Force, RFC 4408, April, 2006.

